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Abstrgct. This paper makes an analysis and a comparison between three
heutist.lcs,. which give approximations to solution in polynomial time for
Optimization prot?lems like the graph bipartition problem. The heuristics uses
are: Extreme Optimization (EO) searching in solution space the variable with
poorest value for a random update to optimize the problem, Extreme
Optimization Distributed (EOD) that is a generalized version of EO searching
in a neighborhood and Extreme Optimization Distributed with Small World
(EODsw) that searches the variables with poorest value in a neighborhood
applying Small World. For the analysis we used Geometric, Random and Small
World graphs. The obtained results show us that EOD and EODsw are very
similar in their behavior and are better than EO, but EODsw result more

competitive than EOD for some classes of problems. Key Words: Optimization,
correlation, Small World.

1 Introduction

The Bak-Sneppen model [1] is based over species, it associates one value, which is
knows as “fitness” taking values between 0 and 1; it is called value of adaptability;
the species with the smallest value (poorest degree of adaptation), is selected for a
random update, with the purpose of improving its adaptability. Change species
adaptation values affects at his neighbors. The adaptability of the neighbors could be
modify selecting another random value, warrant work only in the space of solutions;
after sufficient number of iterations the system reaches a highly correlated state
known as criticality self — organized. The Extreme optimization (EO) is based over
the Bak-Sneppen model, only that here, the element with the smallest value, is
selected for a random update without any explicative improve for it.

The Extreme Optimization Distributed model (EOD) searches the element with the
poorest adaptation inside a locality, then, performs a random update. The Bak-
Sneppen model takes the element with the poorest adaptation from a global set,
nevertheless EOD takes the element from a locality or a neighborhood.

The Small World (SW) it is a kind of EOD because is based in a neighborhood. “Y9u
are only ever six degrees of separation away form anybody else on the planet”, Soc1§l
networks model six ‘degrees of separation’ (1990) [2], explains that anypody are six
persons of separation at most. Small Worlds is a generalized version of t}}ls model.
This paper is organized as follows. In section 2 we describe the techniques and the
implementation of the used algorithms. In section 3 we present the Graph Bipartition
Problem. In section 4 we show the result of the computer simulation of heuristics
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2.4 Extreme Optimization Distributed with Small World

There are three fundamental aspects in the study of the network, which have the
property to be large and sparse, according James Case [3]:

al] vertices v of the number of edges incidents on v.
ﬁg ?L::a:vcer:ag;ekog:rall connected pairs of difTerent vertices, of the length L of the
ting path.

i:;’?ﬁzlgzgzzgcy ngwith which three connected vertices are completely cqnnected.

Extreme optimization distributed with Small W(_)rld (EODsw) works in the same
way EOD with neighborhood, the structural properties of the graphs measures for_lts
characteristically length of path L, average over all vertexes. Moreover grou.pmg
coefficient C defined like: suppose that a vertices v has k, neighbors; then can exist at

most k,(k, —1)/2 edges between them (this occur when all neighbors of v are

connected with all) C denotes the fraction of cdges allowed, existence. L is the typical
separation measure between two vertex in the graph (one property global), while C is
the measure typically grouping from neighborhood (one local property). The regular
networks have a big C but small L while the random networks have a big L but small
C. There are some networks between this class that have small L and big C. One
network with this property improves performance to search because it can find better
local optima because high grouping C, but at the same time have a relation with all
the system, to compare between this minimum, due to small L. The small world
networks used here have a lot of vertex with scarce connection, but not the sufficient
to disconnect the graph. Specific is required where guarantees that the random
graph are connected. Exist scarce connection, facilities the implementation in
distributed ambient, because the number of message interchange are small O(k).

3 The Graph Bipartition Problem

The problem of graph bipartition is a problem that we can to solve with EQ. The
Graph Bipartition Problem (GBP) is: there is a graph of N vertices, where N is even,
have to separate the vertices in two sets of cardinality N/2, such that the number of
edges that connect both sets “cut size” m, is small.

To approximate this problem for a solution using EO, we associate each vertex V;
one variable X; can take two values 0, 1, indicated belong to one of two sets. The

adaptation function of each variable x, is defined as follows:

__ &
/ g +b, )

Were g, is the number. of “good” edges that connect ‘i’ with others vertices inside the
same set, and b; is the number of “bad” edges that connect ‘i’ with vertices through
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partition. For nodes not connected, we associate oncf =1. In order to optimize the
problem, we can minimize the cut size of the graph.

4 Results of Computer Simulation

We used different type of graphs to prove the heuristics, like this: random graphs,
geometric graphs and small world graphs, varying in each one the vertexes and
probability or ratio with tow vertexes are connccled; the implementation of small
world graphs can be found in Ref [8].
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Fig. 1. Geometrics graphs (Number monochromatic edges & number vertex) with 4000 vertex
and probability of 0.1
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Fig. 3. Small World graph (Number monochromatic edges & Probability) with 2000 vertex

1 v~—

09t
o8y
o7t
06
=1
(&3
05t
D4}

03t

02}

0.1 = A Baiondh A.“‘J A d ‘l" Ak An‘n!.‘ A A
10 10 10 10 10°
Probabildy

POt

Fig. 4. Small World graph (CL & Probability) with 2000 vertex

In the graphics, it can be observed that EOD and EODsw are very similar, even in fig.
3 EODsw is better that EOD because it will work over SW graph. We can conclude
for this part that EOD is better that EO and EODsw is belter that EOD over one SW

graph; then in normal conditions EOD and EODsw are similar. Now analysis the
Bipartition Graph problem:
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Table 1. Comparisons between EO, EOD and EODsw. We can see that the values between two
distributions are similar, sometimes EODsw is better that EOD sometimes not, but if we follow
the behavior of each algorithm with 500, 1000, 1500... we can distinguish how are varying
before 3000 vertex

Geometrics Graphs with 3000 vertex

Prob/ Distribution 0.001 Distribution 0.01
Radio
EO EOD EODsw | EO EOD EODsw

0.5 I 0.9975 | 09985 | 0.985 0.85 0.83
0.6 i 0.997 0.098 0.985 0.845 0.835
0.7 ! 0.9984 ] 0998 0.985 0.84 0.825
0.8 I 09977 | 0.999 0.086 0.849 0.82
0.9 i 0.999 0.9975 | 0.985 0.839 0.83
1.0 | 0.9984 | 0.999 0.085 0.85 0.83
1 1 0.9985 | 0.9975 10986 0.845 0.83
1.2 I 0.9975 09975 10986 0.845 0.83
13 I 0.9965 | 09974 | 0.986 0.8455 | 0.825
14 0.999 0.99755 | 0.999 0.987 0.84 0.83
15 0.88 0.999 0.999 0.88 0.83 0.84
1.6 I 0.9992 | 0.9974 1 0.985 0.845 0.825

As you can see, for this analysis we use a Geometric graph for the computer
simulation varying the distributions of the vertex and the probability or ratio with tow
vertexes are connected, next some representatives figures from Table 1.
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In fig. 5 EO don’t follow the others, EOD and EODsw varying but they maintain a

similar behavior.
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This figure are very similar to fig. 5, OE remains on top of the graphic while EOD
and EODsw maintain their behavior and decreases continuously. Some times EOD is
better than EODsw and sometimes EODsw is better.

Next our last figure, his behavior is similar to the other figures; the figures from Table
1 that we don’t graphics have a similar behavior like presente here.
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5 Conclusions

In this work we reviewed three algorithms; first we implemented them and made a-
comparison to find the best. Then we talk about the Bipartition Graphs Problem and
see that sometimes EODsw is better and sometimes EOD is better. Concluding
EODsw and EOD are similar to solve the Bipartition Graph Problem, we can apply

the specific algorithm for our necessities like in the figure 7) a) 1300 vertex EOD is
better that EODsw.

We want to do this comparative to determine that if we apply EODsw we went to
obtains better results that EOD and EQ, but we didn’t, the results obtained tell us that
both algorithms in general are better that EQ, and not only in bipartition problem. If
we have a SW graph, we can take advantage from EODsw, but if we are in bipartition
problem we can’t. To bipartition problem the used graph is not important, hence is not
important the graph’s distributions, because when we apply the algorithm and move
the vertex to another positions in the graph, we change the topology, the only thing

that import us is the connection of the vertex to another vertex, it does not matter if
exist a neighborhood in the graph.

In the future works, the same problem it can be solve for three, four, five, et cetera
partitions, to try to find if EODsw is better to the other, maybe it can be possible

because if we have more partitions we would translate the neighborhood to the
partitions.
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